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Abstract 
The Nutting formula is a simple relationship that 

estimates the optical density of a layer that contains a random 
distribution of absorbing particles. The only variables required 
are the extinction cross section of the particles and the number 
of particles per unit area. However, the Nutting formula is only 
accurate when light scattering is unimportant. More 
sophisticated methods for calculating the optical density that 
take into account light scattering are explored and compared. 

 

Introduction  
The optical density is an important measure for a variety 

of media. For example, the optical density for transmission is 
relevant for medical images, while the optical density for 
reflection is relevant for inkjet prints. A typical medium has 
both absorbers and scatterers. The optical properties of ordinary 
paper are dominated by light scattering. Conversely, the optical 
properties of a clear piece of dyed plastic are dominated by 
light absorption. In the case where there is negligible light 
scattering, the Nutting model can be used to calculate the 
optical density (OD) for the transmission of light through a 
dispersion of absorbing particles [1,2].  

 
OD = 0.434nσ d (1) 

 
n is the number of particles per unit volume, d is the layer 
thickness, and σ is the extinction cross section of the particle. 
σ is often taken to be the projection area (or “geometric cross 
section”) of the particle [2]. However, this is not accurate for 
small particles, so it is necessary to calculate the cross section 
[3]. For a particle that absorbs and scatters, σ = σA + σS, where 
σA is the absorption cross section and σS is the scattering cross 
section. If the particles have a significant scattering component, 
then Eq. 1 is only valid for specular transmission.  

In cases where scattering dominates, paper for instance, 
the Kubelka-Munk (KM) approximation is typically used [4]. 
The attractiveness of the KM model is in its simplicity and 
utility. It is straightforward to calculate the absorption and 
scattering coefficients from the reflectance data. However, this 
method is less accurate when the absorption is too high, so 
there have been recent attempts to improve upon the KM theory 
[5]. This revised Kubelka-Munk (RKM) theory tries to account 
for the increased path length due to scattering. 

Recently, the topic of light propagation in a turbid medium 
in the regime of significant absorption has become of great 
interest in both soft condensed matter physics and medical 

diagnostics [6]. Another area that could benefit from this recent 
work, and is of particular interest to the authors, is the 
calculation of the covering power for a dispersion of silver 
particles [7]. For example, small silver spheres can scatter and 
absorb light strongly [3]. 

There have been many approaches for modeling photon 
propagation in a turbid media. A phenomenological approach to 
the problem is to define a number of fluxes in the medium and 
set up differential equations to govern the radiation transfer 
between them [4]. The many-flux theory is the most 
generalized phenomenological theory. While it is theoretically 
useful, it is not practical. However, this approach becomes 
much more practical when the number of fluxes is limited. The 
simplest case is the one-flux theory, which results in Lambert’s 
law and is essentially the same as the Nutting model. A specific 
case of the two-flux theory gives the very popular KM theory. 
Although not as popular, the four-flux theory can be very useful 
because it adds two directional fluxes. A specific case of the 
four-flux theory essentially gives a KM theory with a 
directional incident beam instead of a diffuse incident beam. 

Assuming the particles are far enough apart to be treated 
independently and the light is incoherent, one can use a 
geometric optical approach to follow the path of the light 
between the scattering or absorption events. In this case, an 
accurate solution can be obtained using a random walk Monte 
Carlo Simulation [8]. While this method is useful as a 
benchmark, it is too time-consuming and unwieldy to be very 
practical. It is much more desirable to have a closed-form 
expression relating the total transmission and the cross sections 
of the particles. There have been many attempts to model the 
random walk nature of photon propagation in a turbid medium. 
A classic approach is to approximate the random walk as a 
diffusion problem [9,10]. However, this method is only 
accurate for relatively weak absorption, and the solutions 
violate causality [11]. Another method for modeling the random 
walk of photons in an absorbing medium that has gained 
prominence is the use of the telegrapher’s equation, which has 
been shown to be a significant improvement over the diffusion 
equation [10-12]. More recently, there has been a proliferation 
of different methods recommended: The Orenstien-Uhlenbeck 
process [13], the cumulant approximation [14], and the 
Gaussian approximation [15]. Currently, there is no consensus 
on which is the best approach. For calculating the optical 
density of a turbid slab, we have decided to focus our attention 
on the telegrapher’s equation because this method has been 
developed to a greater degree, is practical, and has given us 
good results. 



 

 

In this paper, relationships for total transmission are 
derived for diffuse and normally incident light onto a slab 
containing a dispersion of particles, given the absorption and 
scattering cross sections for these particles. The derivations 
were carried out using solutions to the telegrapher’s equation, 
and these solutions were evaluated by comparing them to 
solutions obtained by using the random walk Monte Carlo 
simulation, RKM theory, KM theory, the four-wave theory, the 
revised four-wave theory, and the Nutting model. 

Results and Discussion 

Diffuse Incident Light 
The following time-independent form of the telegrapher’s 

equation [6] was used for the case of a diffuse light source at z 
= z0 and an infinite x-y slab occupying the region from z = 0 to 
z = d, 
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and  
 n = number of photons per unit volume 
 a = absorption coefficient 
 s = scattering coefficient 

c = speed of light 
 j0 = current density of the light source. 
 
In Eq. 2, β is a constant. When β = 0, Eq. 1 gives the diffusion 
approximation for photon propagation [6]. 
 
The general solution to Eq. 1 is 
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The boundary conditions applied are: 
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j (z) ≡ -D′ dn/dz  is the current density. η1 and η2 are the 
average z-component magnitude of the unit velocity vectors for 
the transmitted photons at z = 0 and z = d, respectively. η = 1/2 
for an isotropic distribution, and η = 2/3 for a Lambertian 
distribution. Note that the boundary conditions chosen here are 
different from those chosen by Durian and Rudnick [11].  

The resulting diffuse transmittance at the front surface of 
the slab (T1) and the back surface of the slab (T2) are: 
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For a diffuse light source at the front surface of the slab (z = 0), 
the diffuse transmittance equals 2*T2(0). The factor of 2 is 
necessary because T2(0) is derived under the assumption that 
diffuse emission at z0 occurs into both the forward and 
backward half-spaces; however, one conventionally assumes 
that a real diffuse light source placed at the front surface of the 
slab will emit only into the forward half-space. 

 Normally Incident Light 
For normally incident light at z = 0, a continuum of diffuse 

light sources is effectively generated in the slab with a current 
density proportional to: s exp(-ε z0) dz. Here ε = a + s is the 
extinction coefficient. The product of this term with T2(z0) is 
integrated over z0 and added to the specular component to 
obtain the total transmittance (T): 
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To obtain Eq. 7, η1 and η2 were set equal, therefore, the 
subscripts were dropped.  

In the literature, β values of 0, 1/5, 1/3, and 1 have been 
recommended [6]. Eq. 7 gives the same numerical results as 
Eq. 5.7 in Ref. 11 if we choose η = 1/2 and β = 1/3. We have 
also found other values to consider for β. In the KM theory, the 
s=0 solution for the diffuse transmittance exponentially decays 
with the thickness of the slab, which is only approximately 
true. By forcing T2(0) to follow an exponential decay with the 
slab thickness in the limit s goes to zero, we obtain the 
following relationship for generating new potential values for 
β. 
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This gives β = 4/3 for η = 1/2. In this paper, we use η = 1/2 
and try several different values for β. 

Comparisons 
The optical density for diffuse light incident on a slab was 

calculated for two different values of εd (extinction coefficient 
times the slab thickness) and several different values of ad 
(absorption coefficient times the slab thickness) using the KM 
theory, RKM theory, diffusion model, telegrapher’s model, and 



 

 

the random walk Monte Carlo simulation. In the Monte Carlo 
simulation, the Lambertian distribution was used to generate 
the diffuse incident beam. 

For the RKM theory, the Kubelka-Munk parameters S and 
K were calculated from the optical coefficients s and a using 
the following relationships from Yang et al. [5]: 

2/sS αµ=  (9) 

aK αµ=  (10) 
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In addition, µ=1 if s2 < a2+as. I(θ,φ) is the radiant intensity 
(W/Sr) for light incident on a sublayer, where θ is the polar 
angle relative to the z axis, and φ is the azimuthal angle about 
the z axis. I0 is the radiant power (W) incident on this sublayer. 
In general, α is a function of z, but in practice, α is treated as a 
constant. For a Lambertian distribution, α = 2. The KM theory 
is recovered when µ is set equal to one instead of as specified 
in Eq. 13. 

After careful inspection of the solutions for transmittance 
obtained from the different methods, it was discovered that 
certain solutions we have obtained using the telegrapher’s 
equation are algebraically equivalent to solutions obtained by 
KM theory and the four-flux theory, assuming we make the 
following modification to Eqs. 9 and 10: 
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aK Aα= ` (15) 
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By allowing α to be different in the relationships for S and K 
and restricting their values with Eq. 16 and Eq. 8, the KM 
solution for the transmittance of diffuse light becomes 
equivalent to the solution (2*T2(0)) we obtain using the 
telegrapher’s equation. Under the same set of conditions, the 
four-flux solution for the transmittance of normally incident 
light also becomes equivalent to the solution (Eq. 7) we obtain 
using the telegrapher’s equation.  

The equivalence of the solutions we obtained for 
transmittance using the telegrapher’s equation with solutions 
obtained by the KM and four-flux theories has some interesting 
implications. For instance, the relationship between the 
phenomenological parameters K and S with optical coefficients 
a and s have always been a weak point in KM theory, which 
Yang et al. attempted to address [5]. Typically, α is set equal to 
2. The results above suggest that α should equal the square root 
of 3 if αS = αK. In addition, allowing αS to differ from αK can 

potentially expand the usefulness of the KM and four-flux 
theories. This also provides an easier means of utilizing some 
of the solutions of the telegrapher’s equation because the four-
flux theory and especially the KM theory are standard theories 
that have been fully developed. 
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Figure 1. Optical densities calculated for light diffusely incident on a slab 

with εd = 4 (top) and εd = 8 (bottom) using several different methods 

evaluated at several different values for ad. η = 1/2 for the telegrapher data. 

The results of the calculations show that the solution of 
the telegrapher’s equation for η = β = 1/2, which does not 
satisfy Eq. 8., comes closest to the Monte Carlo data (Fig. 1). 
The agreement does degrade somewhat for lower εd values, but 
it is the best overall solution, especially for optical densities of 
interest. The results of the traditional KM model (i.e., α =2) 
give poor results, but are modestly improved when α is set 
equal to the square root of 3. A much greater improvement to 
the KM model is achieved when αS is set equal to √6 and αK is 
set equal to √(3/2). This solution of the modified KM model is 
equivalent to the solution of the telegrapher’s equation for β = 
1/2, η = √(2/3). The revised KM model gives the poorest 
results. Because the revised KM model was derived for paper 
applications, it might not be applicable to transmissive media. 

The optical density for light normally incident on a slab 
was also calculated (Fig. 2). The calculations were made using 
the four-flux theory, revised four-flux theory, diffusion model, 
telegrapher’s model, the Nutting model, and the random walk 
Monte Carlo simulation. The four-flux theory and the revised 
four-flux theory use the KM and RKM definitions for S and K, 
respectively. Further details on the KM and four-flux 
calculations can be found in Ref. 4. 



 

 

The conclusions for normally incident light are similar to 
the conclusions for diffusely incident light. The telegrapher’s 
equation for η = β = 1/2 gives the best overall results. The 
four-flux model for α = 2 is marginally tolerable, but become 
reasonably good when α is set equal to the square root of 3. 
Results almost equivalent to the best case are achieved when 
αS is set equal to √2 and αK is set equal to 3/√2 (not shown). 
This solution of the four-flux model using the modified KM 
parameters is equivalent to the solution of the telegrapher’s 
equation for β = 2/3, η = 1/√2. Using the revised K and S in the 
four-flux theory gives poor results. The plots in Fig. 2 also 
show the regime where the Nutting model is valid. Using the 
extinction cross section in the Nutting model gives rough 
estimates for the optical density when the absorption coefficient 
is greater than the scattering coefficient. 

The results for the reflectance calculations are not shown 
here. However, it is also found that certain solutions of the 
telegrapher’s equation for reflectance can be expressed as 
solutions of the KM model and the four-flux model if those 
models are modified by using Eqs. 8, 14, 15, and 16. In the 
case of a Lambertian incident light, the telegrapher’s equation 
for β = 4/3, η = 1/2 gives the best results and is equivalent to 
the KM model with αS = 1.5 and αK = 2. In the case of a 
collimated incident light, all of the models tested give good 
results. 
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Figure 2. Optical densities calculated for light normally incident on a slab 

with εd = 8 (top) and εd = 12 (bottom) using several different methods 

evaluated at several different values for ad. Telegrapher, β = 1/3 data are 

omitted to improve the visibility of the β = 1/2 data. The telegrapher, β = 1/3 

case gives results that are a little worse than the β = 1/2 case. η = 1/2 for 

the telegrapher data. 

Summary 
Several different methods were used to calculate the 

transmissive optical density of a slab given the absorption and 
scattering coefficients. A random walk Monte Carlo simulation 
was used to provide a benchmark solution. The calculation was 
made for light normally incident and diffusely incident on the 
slab. The results show that all of the models tested are superior 
to that of the Nutting model. However, the solution for the 
telegrapher’s equation gives the best results. In addition, it was 
discovered that a class of solutions of the telegrapher’s 
equation are also solutions of the Kubelka-Munk theory and 
four-wave theory, if we assume specific modified relationships 
between the phenomenological KM parameters (K and S) and 
the optical coefficients (a and s). The implication of this is that 
the utility of the KM theory and the four-wave theory can 
potentially be expanded. In addition, the application of the 
telegrapher’s equation in certain cases can be simplified by 
using the KM theory and four-wave theory, because these 
methods have been fully developed. 
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